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Warm up: Electric Current

~J = −D0~∇ρ + σ
0

e
~E ; ~J(ω,~q) = −D0

i~q ρ(ω,~q) + σ
0

e
~E(ω,~q)

D0 is a diffusion constant; σ0
e is a DC conductivity.

Continuity equation (charge conservation): ~∇~J + ρ̇ = 0

Linear response theory:

~J(ω,~q) = σ
AC

e (ω) ~E(ω,~q) ; σ
AC

e =
iω σ0

e

iω − D0 q2

AC conductivity. Valid in hydrodynamic regime of small ω, q.

Any generalisations to finite ω and q?



The most general (linear) constitutive relation for e/m current including both longitudinal

and transverse responses

~J(ω,~q) = −D
(
ω, q2

)
i~q ρ(ω,~q) + σe

(
ω, q2

)
~E(ω,~q) + σm

(
ω, q2

)
i~q × ~B (ω,~q) .

~J = −D(∂
t
,∇2

)~∇ ρ + σe

(
∂
t
,∇2

)
~E + σm

(
∂
t
,∇2

)
~∇ × ~B.

This is an ”off-shell” constitutive relation.

D, σe, and σm are momenta-dependent transport coefficient functions (TCF).

can be uniquely determined in holographic models to be discussed next



AdS/CFT



Maxwell field in Schwarzschild-AdS5 geometry (probe approximation)

S = −
∫

d
5
x
√

−g
1

4
e
2
(F

V
)MN(F

V
)
MN

+ Sc.t.

Maxwell equations

EQ
N
:= ∇MF

MN
= 0

Schwarzschild-AdS5 geometry (ingoing Eddington-Finkelstein coordinates)

ds
2 = g

MN
dx

M
dx

N = 2dtdr − r
2
f(r)dt2 + r

2δijdx
i
dx

j,

f(r) = 1 − 1/r4. The horizon is at r = 1, the Hawking temperature is πT = 1.

Near the conformal boundary r = ∞ the solution is expandable in a series (Ar = 0)

Aµ(r, xα) = A
(0)
µ (xα) +

A(1)
µ (xα)

r
+

A(2)
µ (xα)

r2
+

B(2)
µ (xα)

r2
log r

−2
+ O

(
log r−2

r3

)
,

The boundary current (using the holographic dictionary)

J
µ = −ηµν

(
2A

(2)
ν + 2B

(2)
ν + ησt∂σF

(0)
tν

)
.



4 dynamical eqns EQµ = 0 → transport, EQr = 0 → current conservations.

EQµ = 0 admit the most general static homogeneous solutions

Aµ = A
(0)
µ +

ρ

2r2
δµt, A

(0)
µ = const, ρ = const

The boundary theory is a static uniformly charged plasma with no external fields

J
t = ρ, J

i = 0

Next, following the spirit of

S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, (2008)

A
(0)
µ → A

(0)
µ (xα), ρ → ρ(xα).

The solution has to be amended:

Aµ(r, xα) = A
(0)
µ (xα) +

ρ(xα)

2r2
δµt + aµ(r, xα)

Solve for a (bulk-to-boundary propagator)

Different from approaches based on two-point correlators, which assume on-shellness



U(1) vector current: Diffusion and Conductivity

~J(ω,~q) = −D
(
ω, q2

)
i~q ρ(ω,~q) + σe

(
ω, q2

)
~E(ω,~q) + σm

(
ω, q2

)
i~q × ~B (ω,~q) .

D =
1

2
+

1

8
πiω +

1

48

[
−π

2
ω

2
+ q

2
(6 log 2 − 3π)

]
+ · · · ,

σe = 1 +
log 2

2
iω +

1

24

[
π2ω2−q

2 (3π + 6 log 2)
]
+ · · · ,

σm = 0 +
1

16
iω
(
2π − π

2
+ 4 log 2

)
+ · · · .

σ0
m > 0 in a pure QED plasma with one Dirac fermion at one loop level

B. B. Brandt, A. Francis, and H. B. Meyer, (2014)

σ0
m = 0 based on Boltzmann equations J. Hong and D. Teaney, (2010)

Maxwell is linear (exact), no Lorentz force





Memory Function / Causality
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UV(1)×UA(1): Anomaly-induced transport

5d Lagrangian:

L = −
1

4
e
2
(F

V
)MN(F

V
)
MN −

1

4
e
′2
(F

a
)MN(F

a
)
MN

+
κ ǫMNPQR

2
√−g

[
3e

2
e
′
AM(F

V
)NP(F

V
)QR + e

′3
AM(F

a
)NP(F

a
)QR

]
.

Boundary currents:

∂µJ
µ = 0, ∂µJ

µ
5 = 4κ

(
3~E · ~B + ~Ea · ~Ba

)

external e/m (~E, ~B) and axial (~Ea, ~Ba) fields.

CS introduces non-linearity in EQ



I) Linear transport

ρ(xα) = ρ̄ + ǫδρ(xα), ρ
5
(xα) = ρ̄

5
+ ǫδρ

5
(xα),

µ(xα) = µ̄ + ǫδµ(xα), µ
5
(xα) = µ̄

5
+ ǫδµ

5
(xα), µ̄ = ρ̄/2, µ̄

5
= ρ̄

5
/2

Ei(xα) → ǫEi(xα), Bi(xα) → ǫBi(xα), Ea

i (xα) → ǫEa

i (xα), Bi(xα) → ǫBa

i (xα).

J
t
= ρ, ~J = −D~∇ρ + σe

~E + σm
~∇ × ~B + σχ

~B + σa
~∇ × ~B

a
+ σκ

~Ba

J
t

5 = ρ
5
, J

i

5 = −D~∇ρ
5
+σe

~Ea
+σm

~∇× ~Ba
+σχ

~Ba
+σa

~∇× ~B+σκ
~B. ∂µJ

µ
5 = 0

σχ – CME; D. E. Kharzeev and H. J. Warringa, (2009)

σκ – CSE; D. T. Son and A. R. Zhitnitsky, (2004) ; M. A. Metlitski and A. R. Zhitnitsky, (2005)



σm = 72κ
2
(
µ̄

2
+ µ̄

2

5

)
(2 log 2 − 1) + iω

[
1

16
(2π − π

2
+ 4 log 2) + O

(
µ̄

2
+ µ̄

2

5

)]
+ · · · ,

σm[q = 0] − σm[q = 0, µ̄ = µ̄5 = 0] is linear in κ2 (µ̄2 + µ̄2
5)

σχ = 12κµ̄
5

{
1 + iω log 2 −

1

4
ω

2
log

2
2 −

q2

24

[
π

2 − 1728κ
2
(
µ̄

2

5
+ 3µ̄

2
)
(log 2 − 1)

2
]}

+· · · ,

σ0
χ A. Gynther, K. Landsteiner, F. Pena-Benitez, and A. Rebhan, (2011)

σχ[q = 0] is linear in κµ5 and independent of µ

σκ[µ, µ5] = σχ[µ5, µ] σa = 144κ2µ̄µ̄
5
(2 ln 2 − 1) + · · · ,

Plus tons of plots for arbitrary ω, q and µ, µ5
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II) Non-linear corrections induced by the magnetic field

~B = ~B(~x) 6= ~B(t)

D0 =
1

2
− 18(2 log 2 − 1) κ

2 B2

The correction is negative! Violates low bounds P. Kovtun and A. Ritz, (2008)

ω =
[
∓1 + 36 (1 − 2 log 2)κ

2B2
]
6κ~q·~B−

[
1

2
+ 18 (1 − 2 log 2)κ

2B2

]
iq

2−
i

8
q
4
log 2+· · · .

The first term represents the chiral magnetic wave (CMW) D. E. Kharzeev and H.-U. Yee, (2011)

We see nonlinear in B corrections to both the speed of CMW and its decay rate.

Also the degeneracy in the speed of the positive and negative modes is removed.



III) Non-linear transport induced by constant external e/m fields

The external fields are assumed to have constant background values ~E, ~B, ~Ea, ~Ba

~E(xα) = ~E + ǫδ~E(xα), ~B(xα) = ~B + ǫδ~B(xα),

~Ea(xα) = ~Ea + ǫδ~Ea(xα), ~Ba(xα) = ~Ba + ǫδ~Ea(xα).

• Constant background ~B 6= 0, ~E = ~Ba = ~Ea = 0

J
t

(0) = ρ̄, ~J(0) = 12κµ
5
(B) ~B J

t

5(0) = ρ̄5, ~J5(0) = 12κµ(B) ~B

Index (0) means zeroth order in gradient expansion (ǫ = 0)

CME is exact to all orders in ~B. D. E. Kharzeev and H.-U. Yee (2011); A. V. Sadofyev and M. V.

Isachenkov (2011), U. Gursoy and A. Jansen (2014); U. Gursoy and J. Tarrio (2015)

but there are gradient and ~E-field corrections



• Constant background e/m fields ~B & ~E, weak field expansion, ~Ba = ~Ea = 0

~J0 = ~E + 12κµ
5
(B,E)~B + 72 log 2κ

2
µ(B)~E × ~B − 36π

2
κ
3
µ

5
(B,E)

(
~B × ~E

)
× ~E + · · · ,

~J5(0) = 12κµ(B)~B + 72 log 2κ
2
µ

5
(B,E)~B × ~E − 36π

2
κ
3
µ(B)

(
~B × ~E

)
× ~E + · · · ,

Field-dependent chemical potentials

µ(B) =
1

2
ρ̄ + 18 (1 − 2 log 2)κ

2
ρ̄B

2
+ · · · ,

µ
5
(B,E) =

1

2
ρ̄
5
+ 18 (1 − 2 log 2)κ

2
ρ̄
5
B

2
+

1

8
(−π + 2 log 2) 12κ~B · ~E + · · · .

• µ
5
is induced even in totally neutral plasmas ρ̄ = ρ̄5 = 0, via (~E · ~B).

• B2~B & (~B~E)~B terms are the first nonlinear effects in CME

important for discussions of strong magnetic fields



~J0 = ~E + 12κµ
5
(B,E)~B + 72 log 2κ

2
µ(B)~E × ~B − 36π

2
κ
3
µ

5
(B,E)

(
~B × ~E

)
× ~E + · · · ,

~J5(0) = 12κµ(B)~B + 72 log 2κ
2
µ

5
(B,E)~B × ~E − 36π

2
κ
3
µ(B)

(
~B × ~E

)
× ~E + · · · ,

•
(
~B × ~E

)
term leads to anomaly induced Hall current

(chiral Hall effect S. Pu, S.-Y. Wu, and D.-L. Yang, (2015))

• ~J0 ∼ (~B × ~E) × ~E = −E2~B (CME) + (~E · ~B)~E (CEE)

(χKT E. V. Gorbar, I. A. Shovkovy, S. Vilchinskii, I. Rudenok, A. Boyarsky, and O. Ruchayskiy, (2016))

CEE Chiral Electric Effect Y. Neiman and Y. Oz, (2011)

• ~J5(0) ∼ (~B × ~E) × ~E = −E2~B (CSE) + (~E · ~B)~E (CESE)

CESE Chiral Electric Separation Effect X.-G. Huang and J. Liao, (2013), even when µ5 = 0



Towards all order non-linear constitutive relations

Linear in constant background times linear in inhomogeneous field perturbations

δρ
5
~B, δρ ~Ba,

(
~∇ · δ ~Ea

)
~B,

(
~∇ · δ ~E

)
~Ba, ~Ea × δ ~E, ~Ea × ~∇δρ,

~Ea ×
(
~∇ × δ ~B

)
, ~Ea × δ ~B, ~Ea ×

(
~∇ × δ ~Ba

)
, ~Ea × δ ~Ba,

~Ea × ~∇
(
~∇ · δ ~E

)
,
(
ρ̄~B + ρ̄

5
~Ba
)
× δ ~E,

(
ρ̄~B + ρ̄

5
~Ba
)
× ~∇δρ,

(
ρ̄~B + ρ̄

5
~Ba
)
×
(
~∇ × δ ~B

)
,
(
ρ̄~B + ρ̄

5
~Ba
)
× δ ~B,

(
ρ̄~B + ρ̄

5
~Ba
)
×
(
~∇ × δ ~Ba

)
,

(
ρ̄~B + ρ̄

5
~Ba
)
× δ ~Ba,

(
ρ̄~B + ρ̄

5
~Ba
)
× ~∇

(
~∇ · δ ~E

)
, ~E × δ ~Ea, ~E × ~∇δρ

5
,

~E ×
(
~∇ × δ ~Ba

)
, ~E × δ ~Ba, ~E ×

(
~∇ × δ ~B

)
, ~E × δ ~B, ~E × ~∇

(
~∇ · δ ~Ea

)
,

(
ρ̄
5
~B + ρ̄~Ba

)
× δ ~Ea,

(
ρ̄
5
~B + ρ̄~Ba

)
× ~∇δρ

5
,
(
ρ̄
5
~B + ρ̄~Ba

)
×
(
~∇ × δ ~Ba

)
,

(
ρ̄
5
~B + ρ̄~Ba

)
× δ ~Ba,

(
ρ̄
5
~B + ρ̄~Ba

)
×
(
~∇ × δ ~B

)
,
(
ρ̄
5
~B + ρ̄~Ba

)
× δ ~B,

(
ρ̄
5
~B + ρ̄~Ba

)
× ~∇

(
~∇ · δ ~Ea

)
.

The first terms δρ
5
~B, δρ~B are responsible for the chiral magnetic wave (CMW)



IV) Constant magnetic and time-dependent electric fields

~B = ~B, ~E = ~E(t) 6= ~E(~x), ~Ba
= ~Ea

= 0, ρ̄ = ρ̄5 = 0

∂µJ
µ
= 0, ∂µJ

µ
5 = 12κ~E · ~B −→ µ5 6= 0

• Gradient expansion

~J = 12κµ
5
~B + ~E −

log 2

2
∂t

~E −
π2

24
∂2

t
~E −

(
3

2
π + 3 log 2

)
κ∂tρ5

~B

+9π2κ3ρ
5

(
~B × ~E

)
× ~E + 12#1κ∂

2

tρ5
~B+O

(
∂4
)
,

~J5 = 12κµ~B − 36 log 2κ2ρ
5
~B × ~E +

3

2

(
π2 + 3π log 2 + 6 log2

2
)
κ2∂tρ5

~B × ~E

−
3

8

(
48C + π

2 − 12π log 2
)
κ
2
ρ
5
~B × ∂t

~E + O
(
∂
4
)
,

where C is a Catalan constant and #1 is known numerically only #1 ≈ 0.362.

µ = 0+O
(
∂3
)
, µ

5
=

1

2
ρ
5
+

3

2
(π − 2 log 2)κ~E · ~B+18 (1 − 2 log 2)κ2ρ

5
B

2+O
(
∂3
)
.



• Weak electric field expansion

ρ
5
∼ O(ǫ), ~E(t) ∼ O(ǫ), ~B ∼ O(ǫ0)

Linear in ǫ

J
t
= 0, ~J = σe[∂t]~E + κτ1[∂t] ρ5

~B + κ
2
τ2[∂t]

(
~E · ~B

)
~B; J

t

5 = ρ
5
, ~J5 = 0

The electric current is put on-shell,

J
i
= σijEj, σij = σe︸︷︷︸

σT

(
δij −

BiBj

B2

)
+

[
σe −

(
12

iω
τ1 − τ2

)
κ
2
B

2

]

︸ ︷︷ ︸
σL

BiBj

B2
,

In DC limit τ0
1 is known analytically K. Landsteiner, Y. Liu, and Y.-W. Sun, (2015);

M. Ammon, S. Grieninger, A. Jimenez-Alba, R. P. Macedo, and L. Melgar, (2016)
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To enhance the effect of anomaly, δGL = GL − GT
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Conclusions

• An off-shell constitutive relation for U(1) current consists of a momenta-dependent

diffusion term and two conductivities. Certain universality between dissipative transport

coefficients η and D is observed.

• Causality restoration: at large momenta, the effective diffusion TCF is a decreasing

function of both frequency; the corresponding memory function has support in the past

only.

• We have re-examined transport coefficients induced by the chiral anomaly. We seem to be

able to rediscover all known anomaly-induced effects within one and the same holographic

model, without introducing any additional inputs or model assumptions, which appeared

in the literature

• For linearized problem, we have completely determined all anomaly-induced TCFs to all

orders in the gradient expansion

• For nonlinear problem with constant external fields, we have found E-induced corrections

to CME/CSE, and B-induced modifications to CMW, and diffusion coefficient D

• There seem to be enhancements of anomaly-induced affects at finite frequencies


